Formal models of bank cards for free

Fides Aarts, Joeri de Ruiter, and Erik Poll
Institute for Computing and Information Sciences
Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
{f.aarts, joeri,erikpoll}@cs.ru.nl

Abstract—Learning techniques allow the automatic inference
of the behaviour of a system as a finite state machine. We
demonstrate that learning techniques can be used to extract
such formal models from software on banking smartcards which
— as most bank cards do — implement variants of the EMV
protocol suite. Such automated reverse-engineering, which only
observes the smartcard as a black box, takes little effort and
is fast. The finite state machine models obtained provide a
useful insight into decisions (or indeed mistakes) made in the
design and implementation, and would be useful as part of
security evaluations — not just for bank cards but for smartcard
applications in general — as they can show unexpected additional
functionality that is easily missed in conformance tests.

I. INTRODUCTION

Software for banking or credit cards will be developed us-
ing a very strict and regimented software engineering process.
After all, this software is highly security-critical and patching
is usually not an option. The software will be subjected to
rigorous compliance tests and security certifications, possibly
even costly Common Criteria certifications.

Establishing security here is often more difficult than just
establishing correctness, or compliance with a standard. In
checking compliance (e.g. for interoperability) the emphasis
tends to be on the presence of required functionality: if some
functionality is missing, the implementation is incorrect and it
will not work correctly in all circumstances. Security on the
other hand is also concerned with the absence of unwanted
Sfunctionality; if an implementation provides more functionality
than what is required, then it may be considered compliant —
after all, it does what it is supposed to do — but it might be
insecure, as it does more than what it is supposed to do, and
this additional functionality may be a source of insecurity. This
makes it hard to test for security bugs, and to discover them
in the field: unlike functional bugs, security bugs may never
show up under normal circumstances.

Testing of security applications using model-based testing
techniques seems an interesting approach to test for security
vulnerabilities [1l], as a generalisation of fuzzing. It does
however require formal models that specify the intended
behaviour of the system, and in practice these are often
not available, because creating them is time-consuming, and
possibly complex and error-prone. Constructing these models
automatically would therefore be extremely useful. A potential
approach is to use program analysis to construct models from
source code. Of course, in many cases, access to source code
is restricted. The method discussed in this paper constructs
models just by observing the smartcard’s external behaviour.

A widely used technique for creating a model from obser-
vations is regular inference, also known as automata learning
[2]. The regular inference algorithm [3], [4] provides sequences
of inputs to a System Under Test (SUT) and observes the
responses to infer a Mealy machine, a special form of finite
state machine, as explained in Section In addition to
standard learning methods, abstraction techniques for data
parameters [S], [6] can be used to learn a more detailed model
of the system.

We show that these techniques can provide useful formal
models of bank cards quickly without much effort, which can
be a useful addition to testing or security evaluations of these
products. The technique is not just applicable to bank cards,
but can be applied to any smartcard.

II. BACKGROUND: SMARTCARDS AND EMV

A. Smartcards

All smartcards follow the ISO/IEC 7816 standard [7]]. Here
communication is in master-slave mode: the terminal sends a
command to the card, and the card returns a response, after
which the terminal can send another command, etc. Commands
and responses are simply sequences of bytes with a fixed
format and meaning, called APDUs (Application Protocol Data
Units).

The second byte in a command APDU is the instruc-
tion byte, and specifies the instruction that the smartcard
is requested to perform. The last two bytes of a response
APDU are the status word, which indicates if execution of the
command went OK or if some error occurred. The ISO/IEC
7816 standard defines some standard instruction bytes and
error codes.

Standard instructions we used to infer the behaviour of
bank cards include:

e the SELECT instruction to select which of the possibly
several applications on the smartcard the terminal
wants to interact with;

e the VERIFY instruction to provide a PIN code to the
card for authentication of the cardholder;

e the READ RECORD instruction to read some data
from the simple file system that the card provides;

e the GET DATA instruction to retrieve a specific data
element from the card (for example the PIN try
counter, which records how often the PIN can still
be guessed);

e the INTERNAL AUTHENTICATE instruction to au-
thenticate the card; the terminal supplies a random
number as argument to this command which the
smartcard then encrypts or signs to prove knowledge
of a secret key.

For the purposes of this paper the difference between the
‘files’ retrieved using READ RECORD and the ‘data elements’
retrieved using GET DATA is not important.

B. EMV

Most smartcards issued by banks or credit cards companies
adhere to the EMV (Europay-MasterCard-Visa) standard [S8]].
This standard is defined on top of ISO/IEC 7816. It uses some
of standard instruction bytes (incl. those listed above), but also
defines additional ones specific to EMYV, including:

e the GENERATE AC instruction to let the card generate
a so-called Application Cryptogram (AC);

e the GET PROCESSING OPTIONS instruction to ini-
tialise the transaction, provide the necessary informa-
tion to the card and retrieve the capabilities of the
card.

A normal EMV session consists of the following steps:

1) selection of the desired application on the smartcard
using SELECT. There may be several applications on
a smartcard. Some bankcards will provide multiple
EMV-applications for different uses, e.g. one to be
used by ATMs and one to be used by a hand-held
reader for internet banking.

2) initialisation of the transaction using GET
PROCESSING OPTIONS. The terminal provides
the card with data, specified in the response to the
selection of the application. The card initialises
the transaction and sends a response containing its
capabilities.

3) optionally: cardholder verification and/or card au-
thentication. Card authentication can, for exam-
ple, be done using a challenge-response mechanism
(called DDA in the EMV standard) by invoking
the INTERNAL AUTHENTICATE instruction. Card-
holder verification can be done offline by checking
the PIN code using the VERIFY instruction; here the
PIN can be sent to the smartcard either in plaintext or
encrypted. Checking the PIN can also be done online,
in which case the PIN is sent to the bank back-end
to check it.

4) the transaction. For the actual transaction one or two
cryptograms are requested using the GENERATE AC
instruction, as discussed in more detail below.

5) scripting. After completing a transaction, the terminal
may send additional Issuer-to-Card scripting com-
mands, that allow the issuer to update cards in the
field.

The cryptograms generated for a transaction can have one of
the following three types:

e an Authorisation Request Cryptogram (ARQC), which
is a request to perform a transaction online;

e a Transaction Certificate (TC), which indicates accep-
tance of a transaction;

e an Application Authentication Cryptogram (AAC),
which indicates rejection of a transaction.

All these cryptograms contain a MAC (Message Authentica-
tion Code), a hash over some data encrypted with a secret
key.

An EMV transaction involves at most two of these cryp-
tograms. The types of these cryptograms depend on the
transaction. EMV transactions can be offline or online. For
an offline transaction, the terminal sends data about the trans-
action to the card, and the card returns a TC to approve the
transaction. For an online transaction, the card first provides
an ARQC that is sent back to the issuing bank. The bank’s
response is sent to the card, which will then return a TC
if the response is correct. Every transaction by the card is
identified by a unique value of the Application Transaction
Counter (ATC), that the card keeps track of.

The terminal requests these cryptograms using the
GENERATE AC command. The terminal will indicate which
type of cryptogram it wants, but the card may return a different
type than requested. For example, when the terminal requests
a TC, the card may return an ARQC (namely in case the
card wants the terminal to go online to get approval for the
transaction from the bank) or it may decline the transaction by
responding with an AAC.

The EMV protocol as described above is also used for in-
ternet banking in the EMV-CAP protocol. Here bank customers
use a handheld smartcard reader with a small display in which
they insert their bank card. EMV-CAP is a proprietary standard
of MasterCard. Unlike the EMV specs, the EMV-CAP specs
are not public, but they have been largely reverse-engineered
[9], [10]. In EMV-CAP the card is requested for an ARQC to
authorise an transaction (e.g. an internet bank transfer). This is
then followed by a request for an AAC, thus completing (or,
more precisely, aborting) a regular EMV transaction so that
the card is left in a ‘clean’ state.

III. BACKGROUND: INFERENCE OF MEALY MACHINES
A. Mealy Machines

We use Mealy machines to model the behaviour of smart-
cards. A Mealy machine is a finite state machine where every
transition involves an input and a resulting output. Formally, a
Mealy machine is a tuple M = (I,0,Q,q°,5, \), where I, O
and @ are nonempty sets of input symbols, output symbols, and
states, respectively; ¢° € Q is the initial state; § : Q x I — Q
is the transition function; and X\ : Q x I — O is the output
Sfunction. Elements of I* and O* are input and output strings
respectively.

An intuitive interpretation of a Mealy machine is as fol-
lows. At any point in time, the machine is in some state g €).
It is possible to give inputs to the machine by supplying an
input symbol ¢ € I. The machine then responds by producing
an output symbol A(g,?) and transforming itself to the new

state d(q,7). Let a transition g £> q" in M denote that
d(g,7) = ¢' and X(g,7) = o.

We extend the transition and output functions from input
symbols to input strings in the standard way, by defining:

dg,e) = q

6(q,ui) = 6(5(q,u),i)
Mg,e) = €

Mg ui) = Mg, u)A(d(q,u),1)

The Mealy machines that we consider are complete and
deterministic, meaning that for each state ¢ and input 7 exactly
one next state (g, %) and output symbol A(g, 7) is possible.

Given a Mealy machine M with input alphabet I, output
function), and initial state ¢°, we define Ay (u) = A(¢°, u),
for v € I*. Two Mealy machines M and M’ with input
alphabets [are equivalent if Apq(u) = A (u) for all input
strings w € I*.

B. Inference of Mealy Machines

Angluin’s well-known L* algorithm [2] is an active learn-
ing algorithm to infer deterministic finite automata. Inspired by
work of Angluin, Niese [3] developed an adaptation of the L*
algorithm for active learning of deterministic Mealy machines.
The algorithm assumes there is a Teacher, who knows a
deterministic Mealy machine M = (I,0,Q,q",6,), and a
Learner, who initially has no knowledge about M, except
for its sets I and O of input and output symbols. Whenever
the Teacher accepts an input symbol on M, it maintains the
current state of M, which at the beginning equals the initial
state ¢°. The Learner can ask three types of queries to the
Teacher, see Fig.

e An output query + € I. Upon receiving output query

1, the Teacher picks a transition ¢ i(; q', where ¢ is
the current state, returns output o € O as answer to
the Learner, and updates its current state to ¢'.

o A reset query. Upon receiving a reset query the
Teacher resets its current state to ¢°.

e An equivalence query H, where H is a hypothesized
Mealy machine. The Teacher will answer yes if H is
correct, that is, whether # is equivalent to M, or else
supply a counterexample, which is a string u € I*
such that u produces a different output string for both
automata, i.e., Ay (u) # Ay (u).

The equivalence query cannot be really supported if the
actual machine M can only be observed as a black box, as is
the case in our work, as we analyse smartcards without access
to the program code. In such cases, the equivalence query can
only be approximated, namely by testing to see if a difference
between the actual machine M and the hypothesis H can be
detected. (Note that this is a form of model-based testing.) As
explained below, there are different strategies to test this.

The typical behaviour of a Learner is to start by asking
sequences of output queries (alternated with resets) until a
“stable” hypothesis H can be built from the answers. After
that an equivalence query is made to find out whether H is
correct. If the answer is yes then the Learner has succeeded.
Otherwise the returned counterexample is used to perform sub-
sequent output queries until converging to a new hypothesized
automaton, which is supplied in an equivalence query, etc.

QOutput query
Output
Learner Reset query Teacher
Equivalence query
Yes/Counterexample
Fig. 1. Learning framework
command type
(plus possibly IS07816
cryptogram type) Test command eV
—_— — -?
Learner harness
-—
status word / Mapper response
(plus possibly
cryptogram type)
Fig. 2. Set-up

IV. SETUP AND PROCEDURE

We used authentic bank cards as SUT/Teacher. Access to
the smartcards was realised via a standard smartcard reader and
a testing harness discussed in Section We connected the
SUT to the LearnLib library [4], which served as Learner, see
Fig. [2| The LearnLib tool provides a Java implementation of
the adapted L* algorithm. Because LearnLib views the SUT
as a black box, equivalence queries can only be approximated.
The tool provides several different realisations of equivalence
queries. In our experiments we used a random test suite with
1000 test traces of length 10 to 50 as equivalence oracle.
We verified our results with the W-Method by Chow [11]] by
checking if it will find at least one more state than the random
test suite.

For our tests we used a collection of MasterCard and Visa
branded debit and credit cards from the Netherlands, Germany,
Sweden and the UK. All the MasterCard credit cards contain
a MasterCard application, whereas on the bank cards there
is a Maestro application. Both these applications are used for
payments in shops and to withdraw cash from ATMs. The
Dutch bank cards also contain a SecureCode Aut application,
which is used for online banking with a handheld EMV-CAP
reader provided by the bank. The Visa branded debit card
contains the Visa Debit application.

A. Test harness

As illustrated in Fig. 2| our test harnes{]] translates the
abstract command (from the input alphabet of our Mealy
machine model) to a concrete command APDU, and trans-
lates a response APDU to a more abstract response (in the
output alphabet of the Mealy machine model). It supports the
commands listed in Section

The test harness is just over 300 lines of Java code. Most
of this code is generic code to set-up a connection to the
smartcard reader. A regular smartcard reader was used, and
communication was performed using the standard Java Smart
Card 1/O library. The code specific to EMV is just over 100
lines of code, and consists of 15 methods that define some
command APDU to be sent to the card. The input alphabet
corresponds to these 15 methods.

! Available from http://www.cs.ru.nl/~joeri/

http://www.cs.ru.nl/~joeri/

For many parameters of these commands the test harness
uses some fixed value, for instance for the random number sent
as argument of INTERNAL AUTHENTICATE, the payload
data for the cryptograms generated by the card, and the
(correct) guess for the PIN code. One would not expect a
different random number to affect the control flow of the
application in any meaningful way, so by fixing values here
we are unlikely to miss interesting behaviour. Note that we
have two different payloads when requesting the cryptograms
due to the difference between the first and second request for
a cryptogram. As these payloads are different, both a correct
and an incorrect payload is used when requesting cryptograms.
Obviously, entering an incorrect PIN code would affect the
control flow, but learning about the behaviour in response to
incorrect PIN guesses is very destructive as it will quickly
block the card.

For several commands different variants are provided by
the test harness:

e For the commands GET DATA, READ RECORD and
GET PROCESSING OPTIONS, both a variant with
correct arguments and one with incorrect arguments
is provided. E.g., for GET DATA we have variants
requesting a data element that is present or one that
is not.

e For the GENERATE AC command 6 variants are pro-
vided, as there are 3 cryptogram types, each of which
can be used with one of 2 sequences of arguments
(one for the first and one for the second cryptogram).

The test harness does not output the entire response of
the smartcard to the learner. It only returns the 2 byte status
word, but not any additional data returned by the card. For
most commands, like GET PROCESSING OPTIONS, this
additional data returned will always be the same, so there is
not much interest in learning it. The only exception to this
is the GENERATE AC command: here the test harness does
return the type of cryptogram that was returned by the card
(but not the cryptogram itself; as this is computed using a
cryptographic function on the input and the card’s ATC, the
response will never be the same and there is nothing we could
hope to learn from it).

A limitation of our test harness is that we do not know the
bank’s secret cryptographic keys that are needed to complete
one ‘correct’ path of the protocol, namely the path where
the card produces an ARQC as first cryptogram and a TC as
second. For this a correct reply to the first ARQC is needed,
which requires knowledge of the cryptographic keys used by
the bank’s back end.

To be able to include the VERIFY command in the
learning, the PIN code of the corresponding card has to be
known. We did not try to learn the behaviour of the card in
response to incorrect PIN codes, to avoid blocking the card.
The cards we used are real bank cards for which we cannot
reset the PIN. (With access to functionality to reset the PIN,
which the issuing bank might have, one could also try to learn
the behaviour in response to incorrect PINs.) The German card
only supported encrypted PIN verification. Since the public key
of MasterCard is needed for this, we were unfortunately not
able to use VERIFY with this card.

Other

Initialisation >
Selected g@bQthe

ET PROCESSING OPTIONS (valid)
GET DATA (valid) / READ RECORD (valid) / VERIFY)Other

INTERNAL AUTHENTICATE

DDA performed 3>

GENERATE AC 1st TC / ARQC
ARQC

GENERATE AC 1st TC / ARQC
ARQC

GET DATA (valid) / READ RECORD (valid) / VERIFY

GENERATE AC 1st AAC
AAC

ARQC requested
GENERATE AC 2nd TC / AAC
AAC

Transaction finished

Fig. 3. Automaton of Dutch Maestro application. Just to highlight one
observation that can be made from this diagram: the VERIFY operation, i.e.
the verification of the PIN code by the smartcard, is optional; this makes sense
because the terminal may check the PIN code with the bank (so-called online
PIN verification), or choose not to verify the PIN at all.

Other

DATA (valid) / READ RECORD (valid) / VERIFY

Verify performed 3>

GENERATE AC 1st
AAC

GENERATE AC 1st ARQC
ARQC

ARQC requested

GENERATE AC 2nd TC / AAC
AAC

GENERATE AC 1st TC GENERATE AC 1st AAC
TC AAC

Transaction finished

Fig. 4. Automaton of Dutch SecureCode Aut application. Note that
here the VERIFY operation — i.e. verification of the PIN code — must be
passed successfully before cryptograms can be generated, except for the AAC
cryptogram to abort the session.

The Visa branded card can perform the GET DATA com-
mand to retrieve the current value of the ATC. This function-
ality is used for a so-called mapper component [5], [6] to
be able to learn the transitions where a counter is increased.
The mapper is integrated in the test harness of the SUT,
and keeps track of the value of the counter. The GET DATA
command only returns the current value of the ATC if the Visa
Debit application is selected. Since the mapper depends on the
value of the ATC, the Visa Debit application is automatically
selected by the test harness before an output query is performed
by LearnLib. The mapper retrieves the value of the ATC after
each output query and adds the difference with the stored value
of the ATC to the response, e.g. ‘+1’ on an edge indicates the
ATC was increased by one in this transition.

B. Trimming the inferred state diagrams

The state diagrams returned by LearnLib as .dot file look
quite unintelligible at first sight, because there are so many
transitions: for each state, one for every possible command.
However, many transitions from a given state are errors and

simply return to the same or an error state (e.g. the ‘Selected’
or ‘Finished’ state). By simply collapsing all these transitions
into one transition marked ‘Other’, and drawing multiple
transitions between the same states with different labels as
one transition with a set of labels, we obtain simple automata
such as figures [3} [] [5|and [6] In these figures the responses are
omitted for readability. We simply obtained these by manually
editing the .dot files. This could easily be automated. At the
same time we chose meaningful names for the different states.

The transition labels for GENERATE AC commands in-
dicate (i) if it is the 1st or 2nd request for a cryptogram
in this session (i.e. whether the argument is for the first or
second request), (ii) the type of cryptogram that was requested
(ARQC, AAC, or TC), and (iii) the type of cryptogram that
was returned. E.g. GENERATE AC 1st ARQC ARQC means
the type requested was ARQC, the arguments supplied for the
first request, and the type returned was an ARQC. We have
combined arrows if different parameters yield the same re-
sponse; e.g. GENERATE AC 2nd TC/AAC AAC means that
requests for a TC or AAC, with the arguments for the second
request, both result in an AAC.

V. RESULTS

We learned models of EMV applications on bank cards
issued by several Dutch banks (ABN-AMRO, ING, Rabobank)
and one German bank (Volksbank), and on MasterCard credit
cards issued by Dutch and Swedish banks (SEB, ABN-AMRO,
ING) and of one UK Visa debit card (Barclays). The Dutch
bank cards contain two EMV applications, one for internet
banking (SecureCode Aut) and one for ATMs and Point-
of-Sales (Maestro). All cards resulted in different models,
with as only exception that the Maestro applications on all
Dutch bank cards were identical, as were the SecureCode
Aut applications. An educated guess would be that these
implementations come from the same vendor.

To learn the models LearnLib performed between 855 and
1695 membership queries for each card and produced models
with 4 to 8 states. The total learning time depended on the
algorithm and corresponding parameters used for equivalence
approximation. The time needed to construct the final hypoth-
esis was less than 20 minutes for every card.

When analysing the state diagrams for the different cate-
gories, we made the following observations.

The state diagrams for the ABN-AMRO and ING credit
cards are very similar. There are only a few subtle differences,
e.g in the initial state different error codes are returned
in response to some instructions. Also the handling of the
INTERNAL AUTHENTICATE instruction differs: both cards
respond with the error 6D00 (‘Instruction code not supported
or invalid’), indicating that the instruction is not supported, but
for the ING card this does not have any influence on the state,
whereas the ABN-AMRO card is ‘reset’ to the ‘Selected’ state.

Comparing the Maestro (Fig.[3) and the SecureCode Aut
application (Fig. @) on the Dutch bank cards, we can observe
the following:

1) In both applications, if data that is not available is
requested, either using the READ RECORD or the
GET DATA instruction, the application returns to

the ‘Selected’ state. This seems a bit strict, as the
terminal has no way of knowing whether certain data
that can be retrieved using GET DATA is available.
Apparently, here the developers have chosen a ‘safe
by default’ approach. Though this seems a sensible
approach, one can imagine this can lead to compati-
bility problems with terminals that expect certain data
to be present on the card while it is not, as the card
will reset to a state that the terminal might not expect.

2) With the SecureCode Aut application it is possible,
after successfully verifying the PIN code, to request a
TC cryptogram using the GENERATE AC instruction.
This is surprising, as this does not have any meaning
in EMV-CAP: in an EMV-CAP session the terminal
must always first ask for an ARQC (as explained
at the end of Section [[I). One would expect that
requesting a TC cryptogram type would result in
an error (as e.g. happens when a second ARQC is
requested) or in an AAC being returned to abort the
session (as e.g. happens when any type of cryptogram
is requested before PIN verification). Still, it does
not seem that this spurious TC cryptogram can be
exploited to cause a security vulnerability, at least
insofar as we know the EMV-CAP protocol [9], [10].

3) The error code that is given in response to the
INTERNAL AUTHENTICATE instruction is differ-
ent depending on the state in the SecureCode Aut
application. In those states where it is possible in
the Maestro application to perform this action, the
error code is 6987 (‘Expected secure messaging
data objects missing’), while in the other states, an
error code 6985 (‘Usage conditions not satisfied”) is
returned.

Compared to the cards considered before, the Volksbank
card handles things a bit differently (see Fig. [3):

1) Where the other cards return to the ‘Selected’ state
when an error occurs, the Volksbank card goes
into a ‘Finished’ state. From a ‘Finished’ state
there is one transition using the SELECT com-
mand to get to the ‘Selected’ again, and one to
get to the ‘GPO performed’ state using a valid
GET PROCESSING OPTIONS command.

2) Data authentication using DDA is also handled differ-
ently with this card. First, the card forces DDA to be
performed, i.e. if no INTERNAL AUTHENTICATE
command is given, transactions cannot be performed:
the GENERATE AC command will then always return
an error. Also, it is possible to perform DDA even if
the card is in a ‘Finished’ state. This suggests that the
INTERNAL AUTHENTICATE command is handled
separately from the other commands and keeps it’s
own state to indicate whether it is already performed.
Below we compare this with what the MasterCard’s
specifications say.

3) If in the first GENERATE AC a TC is requested,
the card indicates it wants to go online by returning
an ARQC. However, after an ARQC is returned
the first time, when requesting a TC in the second
GENERATE AC, this is actually returned. This seems
odd since one would expect this request to fail (i.e.

GET PROC. OPTIONS (valid)

GET DATA
READ RECORD

GPO performed 3D
1

PROC. OPTIONS (valid)

GEN. AC/ GET PROC. OPTIONS

Finished (no DDA) 2> DDA performed 3D

GET PROC. OPTIONS (valid)

GET DATA / INT. AUTH.
/ READ RECORD

Other

ISELECT

GEN. AC 1st TC/ ARQC

ARQC requested D D

GEN. AC 2nd AAC
AAC

GEN. AC 2nd
/ GET PROC. OPTIONS

GEN. AC 1st AAC
AAC

=

Finished (DDA) 30

GET DATA / INT. AUTH.
/ READ RECORD

INT. AUTH.

Fig. 5. Automaton of Maestro application on Volksbank bank card

GET PROCESSING OPTIONS (+1)

GPO performed Y >Other (=)

'GENERATE AC ARQC / TC (=)
ARQC

ARQC requested D >

GENERATE AC ARQC /TC (=)

INTERNAL AUTHENTICATE (=)

INTERNAL AUTHENTICATE (=) |GET PROCESSING OPTIONS (+1)

GPO performed (DDA) D>

GENERATE AC ARQC/ TC (=)
ARQC

GENERATE AC AAC (=) _
AAC Other (=)

INTERNAL AUTHENTICATE (=)

ARQC requested (DDA) >

IGENERATE AC AAC / TC (=)
AAC

Finished (DDA) >

GENERATE AC AAC (=)

Other (=) AAC

INTERNAL AUTHENTICATE (=)

Other (=)

Fig. 6. Automaton of Visa Debit application on Barclays card. Note that the INTERNAL AUTHENTICATE can be performed at any stage of the protocol.

an AAC to be returned), as we did not provide a valid In the state diagram specified by MasterCard the operation
response from the bank. INTERNAL AUTHENTICATE has no effect on the state,

meaning that this operation — i.e. performing DDA — is optional

and can be done any number of times. In contrast, the model

A. Difference with MasterCard’s specifications learned for the Dutch Maestro card says that this operation can
be done at most once before cryptograms can be generated, and

The Maestro and MasterCard-branded applications should the model for the Volksbank Maestro card says that it must be

all conform to MasterCard’s Paypass-M/Chip speciﬁcatiorﬂ done exactly once before cryptograms can be generated.
This specification does specify a state diagram, which has only

5 states, whereas the models we obtained for Maestro cards Another difference between the state diagram of the Volks-

have 6 or 7 states. bank card and the one specified by MasterCard is the presence

of the ‘Finished (no DDA)’ state, which seems to be a spurious

2This specification is for dual interface (contact and contactless) cards, dead-end in the behaviour of the Volk.sbank card, as it does

rather than contact-only cards, but states that the state diagram for contact-only not lead to a normal protocol run which ends where one or
cards is the same, except that it has one transition less [12| p. 98]. two cryptograms are generated.

As these cards carry the Maestro or MasterCard logo, they
must have undergone some certification. Assuming that their
certification has not missed potential compatibility problems
caused by these deviations from MasterCard’s specification,
this does suggest that this process does not include checking
for implementation of the exact state machine.

B. Different choices in the Visa branded card

In the models of the MasterCard applications there exists
an ‘Initialisation’ state from which the applications can be
selected on the smartcard. Since with the Visa branded card the
test harness automatically selects the Visa Debit application,
this initialisation state is not included in the learned models
and the initial state is ‘Selected’.

The Visa branded card is quite different from the
others. For example, with the Visa card the commands
GET DATA, READ RECORD and VERIFY are allowed in
all states, even before the transaction is initialised with
GET PROCESSING OPTIONS and after the actual trans-
action is started with a GENERATE AC command or even
finished. These commands are thus apparently completely
independent from the state of the card. Also, DDA can be
performed, by an INTERNAL AUTHENTICATE, completely
independent of any other actions, again even during and after
a transaction.

In the model it can be seen from the additional information
added by the mapper that only two transitions increase the
ATC. This indicates that the ATC is increased when performing
a successful GET PROCESSING OPTIONS command (i.e.
9000 is returned as the status word).

VI. RELATED WORK

Protocol fuzzing is an increasingly popular technique to test
for security vulnerabilities. Simpler forms of protocol fuzzing
consider only the format of messages, and then fuzz the dif-
ferent fields, often simply to try and crash an implementation.
More advanced fuzzers, such as Snooze [13]] and Peaclﬂ take
a state-based approach and also use a state machine describing
the protocol as basis for fuzzing. Models such as we obtain
could be the basis for more thorough state-based fuzzing by
such tools. Model-based testing has already been applied to
security, including for smartcards, for instance using UMLSec
models [14]. For EMV smartcards, there have been successful
experiments with protocol fuzzing based on state models at
a commercial test lab [15]; here models were constructed by
hand.

There is a growing interest in model inference, or more
generally automated protocol reverse engineering, for security
testing and analysis; see [16] for a survey and a proposed
classification of approaches, and [17] for a discussion of
future directions in combining model inference and model-
based testing for security. In automated techniques for protocol
reverse engineering one can distinguish approaches that try
to infer either message formats (e.g. [18]]) or protocol state
machines (as we do, and [19]]), or both (e.g. [20]). Another
classification is that some approaches use ‘passive learning’,
where the learner just observes traffic between other parties

3http://peachfuzzer.com

(e.g. [18], [19], [20]), and ‘active learning’, i.e. where the
learner actively takes part in the traffic in order to learn (as we
do). A fundamental limitation of passive learning is that the
quality of the model depends on the traffic that is observed.
It will typically not provide good insight into the possibility
of unwanted behaviour. It is therefore natural to follow such
passive learning by protocol fuzzing to actively look for any
such behaviour. Indeed, fuzzing based on the inferred model
is considered as final stage in [19], [20].

Active learning was also successfully used to infer models
for the electronic passport [6], confirming that the right ‘files’
are accessible at different stages of the protocol. The models
inferred in this paper are more complex than the one of the
passport, and the models reveal interesting differences between
various cards. Additionally, we could learn which command
increased the ATC using a mapper component.

VII. CONCLUSIONS

We have demonstrated that after defining a simple test
harness/mapper component, we can easily obtain useful state
machine models for banking smartcards using learning and
simple abstraction techniques [4], [5]. After some trimming,
the models obtained are easy to understand for anyone familiar
with the EMV standard, and clearly highlight some of the
central decisions taken in an implementation.

Differences in the models obtained for different cards may
be inconsequential differences that exploit the implementation
freedom allowed by the under-specification in the EMV specs,
but can really affect the security conditions imposed (for
example, the difference between figures 3] and [] in requiring
PIN code verification). To determine which is which, we have
relied on ad-hoc manual work and human intelligence - the
models obtained are easy to inspect visually. This step could
even be automated if security conditions are expressed as
temporal logic formulae.

Differences in the state diagrams do not necessarily mean
that implementations are not secure or that they cannot be
regarded as compliant to the standard. The diagrams are a
helpful aid in deciding whether this is the case. However, this
decision then inevitably relies on an informal understanding
of the standard and the essential security requirements. One
would like to see more objective criteria for this, especially as
security protocols are notoriously brittle and deciding what
constitutes a secure refinement of the specification is not
always easy.

The complexity of the standards involved make such
models very valuable. In fact, finite state machine models
such as we obtain would be a useful addition to the official
specifications. Despite the length of the EMV specs [8] (of
over 700 pages), state diagrams describing the smartcard are
conspicuously absent. A state diagram is specified in Master-
Card’s specification [12], but most of the cards we analysed
actually did not conform to it. The differences between e.g.
figures [3] and [5] show the considerable leeway there is between
different implementations of the same spec. One would expect
(and hope?) that engineers developing, testing, or certifying
EMYV smartcards do have such state diagrams, either in the
official documentation or just scribbled on a whiteboard.

http://peachfuzzer.com

The models learnt did not reveal any security issues.
Indeed, one would not expect to find any in smartcards such as
we considered, which should have undergone rigorous security
evaluations and tests. Still, we do notice some peculiarities
(notably that the Volksbank card is still willing to return a
TC even after failed issuer authentication). We believe that
our approach would be useful as part of security evaluations,
because it increases the rigour and confidence provided and it
can save a lot of expensive and boring manual labour.

Here it helps that LearnLib learns the behaviour blindly, in
a completely haphazard way, without any of the preconceptions
or expectations about what the ‘normal’ behaviour is that a
human tester or code reviewer might have. The tool learns
about all the possible behaviour. This is an advantage for
security, as security bugs often occur under unusual conditions,
when someone does something unexpected.

Still, the hand-coded test harness we developed does
make some assumptions about the functionality that the card
provides. The test harness implements the basic operations
for EMV, and LearnLib then only learns all the possible
behaviours given these operations. A deliberately introduced
backdoor would thus not be detected, but we conjecture that
any mistake in the implementation of the internal state and the
associated control flow in the smartcard code would.

For future work, we want to try out our technique on
more standard networking protocols such as SSH or TLS/SSL.
This might be more fruitful in the sense that we can expect
implementation bugs to be more common here, as these
protocols are more complex and the code is less rigorously
developed and tested than smartcard code. In the field of EMYV,
we plan to see if learning techniques can be used to assess
EMYV test suites provided by commercial testing companies;
models learned from such test suites, using passive rather than
active learning, could provide coverage criteria to assess their
quality.

ACKNOWLEDGEMENTS

This work is supported by the Netherlands Organisation for
Scientific Research (NWO) and by STW project 11763 Inte-
grating Testing And Learning of Interface Automata (ITALIA).

REFERENCES

[1] M. Felderer, B. Agreiter, P. Zech, and R. Breu, “A classification
for model-based security testing,” in Advances in System Testing and
Validation Lifecycle (VALID 2011), 2011, pp. 109-114.

[2] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87-106, 1987.

[3] O. Niese, “An integrated approach to testing complex systems,” Dort-
mund University, Tech. Rep., 2003, doctoral thesis.

[4] H. Raffelt, B. Steffen, T. Berg, and T. Margaria, “LearnLib: a framework
for extrapolating behavioral models,” Int. J. Softw. Tools Technol.
Transf., vol. 11, pp. 393—407, 2009.

[5] F. Aarts, B. Jonsson, and J. Uijen, “Generating models of infinite-
state communication protocols using regular inference with abstraction,”
in Proceedings of the 22nd IFIP WG 6.1 international conference on
Testing software and systems, ser. ICTSS’10, 2010, pp. 188-204.

[6] F. Aarts, J. Schmaltz, and F. Vaandrager, “Inference and abstraction
of the biometric passport,” in International Symposium on Leveraging
applications of formal methods, verification, and validation (ISoLa’10),
2010, pp. 673-686.

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

ISO/IEC, “ISO/IEC 7816: Identification cards — Integrated circuit
cards.”

EMVCo, “EMV- Integrated Circuit Card Specifications for Payment
Systems, Book 1-4,” 2008, available at emvco.com.

S. Drimer, S. Murdoch, and R. Anderson, “Optimised to fail: Card
readers for online banking,” in Financial Cryptography and Data
Security, ser. LNCS, vol. 5628. Springer, 2009, pp. 184-200.

J.-P. Szikora and P. Teuwen, “Banques en ligne: a la découverte d’EMV-
CAP,” MISC (Multi-System & Internet Security Cookbook), vol. 56, pp.
50-62, 2011.

T. Chow, “Testing software design modeled by finite-state machines,”
Software Engineering, IEEE Transactions on, vol. 4, no. 3, pp. 178-187,
1978, special issue on COMPSAC.

M. L. Inc., “Paypass - m/chip technical specifications,” Tech. Rep.,
September 2005, version 1.3.

G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmerer, and
G. Vigna, “SNOOZE: toward a stateful network protocol fuzzer,”
Information Security, pp. 343-358, 2006.

J. Jiirjens, “Model-based security testing using UMLsec:: A case study,”
Electronic Notes in Theoretical Computer Science, vol. 220, no. 1, pp.
93-104, 2008.

J. Lancia, “Un framework de fuzzing pour cartes a puce: application
aux protocoles EMV,” in Symposium sur la Sécurité des Technologies
de I’Information et des Communications (SSTIC), 2011.

X. Li and L. Chen, “A survey on methods of automatic protocol reverse
engineering,” in Computational Intelligence and Security (CIS 2011).
IEEE, 2011, pp. 685-689.

K. Hossen, R. Groz, and J. L. Richier, “Security vulnerabilities detection
using model inference for applications and security protocols,” in
Software Testing, Verification and Validation Workshops (ICSTW’11).
IEEE, 2011, pp. 534-536.

W. Cui, J. Kannan, and H. Wang, “Discoverer: Automatic protocol re-
verse engineering from network traces,” in USENIX Security Symposium
(Security07), 2007.

Y. Hsu, G. Shu, and D. Lee, “A model-based approach to security flaw
detection of network protocol implementations,” 2008 IEEE Interna-
tional Conference on Network Protocols, vol. 40, no. 2, pp. 114-123,
2008.

P. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:

Protocol specification extraction,” in Security and Privacy. 1EEE, 2009,
pp. 110-125.

emvco.com

	Introduction
	Background: smartcards and EMV
	Smartcards
	EMV

	Background: Inference of Mealy Machines
	Mealy Machines
	Inference of Mealy Machines

	Setup and procedure
	Test harness
	Trimming the inferred state diagrams

	Results
	Difference with MasterCard's specifications
	Different choices in the Visa branded card

	Related work
	Conclusions
	References

